

Malignant Hyperthermia

Edward C. Adlesic, DMD

University of Pittsburgh School of Dental Medicine

Malignant Hyperthermia (MH)

- rare, potentially fatal pharmacogenetic disorder
- autosomal dominant inheritance
- develop a hypermetabolic crisis of skeletal muscle when exposed to halogenated inhalation agents or succinylcholine

Anesthesiology 2009: 110: 84-89

History of MH

- 1960 → 1st case report published in Lancet
- 1970 → correlations to Porcine Stress Syndrome
- 1970s → muscle biopsy testing begins
- 1979 → FDA approves dantrolene for use
- 1985 → dantrolene shown to reverse intracellular hypercalcemia in skeletal muscle
- 2003 → genetic tests identified for diagnostic use

Incidence of MH

- 500 to 800 suspected cases each year
- rare event → many cases are not found to be MH
- overall incidence in anesthesia: 1:3000 to 1:50,000
 reported incidence has wide range in literature
- **a** adult incidence: 1:50,000 anesthetics (1:100,00)
- children: 1:5000 to 1:10,000 anesthetics (1:30,000)
 - peak mean age: 18.3 years of age
 - children under the age of 15 → account for 52 1% of all cases.
 - earliest age report → 6 months old

Anesthesiology. 2009;110: 89-94 Anesthesiology. 2014; 120: 1333-8 OOO.2011;112:e1-e7 Anesthesiologynews.com. Oct 2014

Incidence of MH

- males > females \rightarrow ratio of 2:1
- inpatient surgery rate → 1:100,000
- ambulatory surgery rate
 - low incidence 0.31 per 100,000 cases
 - ASA Refresher Course 2011: at least 5 cases in ambulatory centers
- 30% patients won't react until the third exposure to triggering agents

Mortality from MH

- 70 to 80% mortality during 1960s to 1980s
- 11.7% mortality rate reported in 2009
 - < 5% rate in 2013 (as low as 1.4%)
 - due to widespread use of dantrolene in MH reactions
 - due to early perioperative recognition of rising end tidal CO₂ by capnography
 - halothane is not being used
 - decreased use of succinylcholine with inhalation agents
- rate increase to 9.5% in 2014

Anesth Analg. 2014;118:388-396 Anesth Analg. 2013;116:118 Anesth Analg. 2014;119:1359

Muscle Contractions

- Ca⁺⁺ mediates skeletal muscle contractions
 - in resting state, Ca++ is stored in the sarcoplasmic reticulum -- not the
- Acetylcholine binds to muscle receptors → get depolarization \rightarrow Ca⁺⁺ released from SR \rightarrow enters cytoplasm through RYR1 (ryanodine) receptor channels

Muscle Contraction

- Ca⁺⁺ binds to troponin
 - allows actin to bind to myosin to shorten the muscle fibers
 - muscle now contracts
- ATP in cytoplasm stops the actin-myosin reaction
 - also pumps excess Ca⁺⁺ back to sarcoplasmic reticulum
- ATP reaction is exothermic

Pathophysiology of MH

- RYR1 receptor channel remains open
 - also have a defect in the voltage regulator for the channel to help keep the RYR1 open
- Calcium continues to flow into the intracellular cytoplasm
 - develop hypercalcemia in the skeletal muscle
- Results in hypermetabolic reaction in muscle

Pathophysiology of MH

- RYR1 defect is primary mechanism in MH
- Secondary mechanism in MH
 - - they release Ca++ into the cytoplasm during an MH reaction

 - result is that MHS patients have higher than normal cytoplasmic Ca⁺⁺ levels

MHS is Malignant Hyperthermia Susceptible

Hypermetabolic State

- aerobic metabolism drives the events at first
 - oxygen consumption V_{O2} is increased 3X normal
 - ATP stores are exhausted in attempt to stop contractions & pump Ca back into the SR
- ATP depletion causes exothermic reaction
- Anaerobic metabolism now takes over
 - develop metabolic acidosis

Anaerobic Metabolism

- acidosis develops \rightarrow cells die \rightarrow release K^+ into the circulation
 - hyperkalemia
 - monitor shows tall, peaked T waves
 - lactic acid levels are 15 to 20 times normal levels → metabolic acidosis
- muscle cell necrosis
 - myoglobin is released into the circulation
 - debris enters the circulation and ↑ blood viscosity
 - ↑ capillary obstruction
 - develop renal damage & coagulopathy

Death from MH

- hypoxia secondary to acidosis
- compromised blood flow to organs
 - especially kidneys = renal failure
- dysrhythmias secondary to hyperkalemia
- DIC develops especially if <u>temperature is greater</u> than 41.5° C
 - rarely do patients survive if DIC develops
 - 50 fold ↑ cardiac arrest 89 fold ↑ death

Anesthesiology. 2009;110:89

Malignant Hyperthermia MH

- hypermetabolic response to potent, volatile inhalation agents
 - halothane (no longer in US) > isoflurane
 - sevoflurane > desflurane
 - less potent than halothane & isoflurane
 - desflurane is least potent MH trigger
- depolarizing muscle relaxant agents
 - succinylcholine
 - succ + volatile agents ---- see more intense reaction
- rarely seen: non anesthesia cases of heat & vigorous exercise

Malignant Hyperthermia MH

- MH can occur on 1st exposure to a trigger
- 30% of cases take at least 3 exposures to trigger agents before MH is seen
 - reports exist where it took up to 10 anesthetic exposures before MH occurred
- Rare to see succinylcholine as a solo triggering agent: usually need volatile gas in addition
 - MH registry 6 out of 500+ cases only had succinylcholine as the trigger
 - all cases reported it took a dose of succ > 0.5 mg/kg
 - what is dose for laryngospasm?

Personal communication MHAUS - Brandon

2010 MH Case Reports 284 Cases of Malignant Hyperthermia (1987 to 2006) Agent % of MH cases Enflurane 2.8% Desflurane Halothane 15.6% Sevoflurane Isoflurane Agents Used % of MH Cases Total Number Volatile Gas Alone 45.1% 128 of 284 cases Succinylcholine Alone 2 of 284 cases 0.7% Anesth Analg. 2010; 110: 498-507

2014 MHAUS Registry Review 712 cases reported to MHAUS Registry 1987-2010 477 cases met criteria 58.5% possible MH 41.5% fulminant MH Results inhalation agent + succinylcholine inhalation agent alone succinylcholine alone succinylcholine alone no trigger agent used 7 cases out of 477

Anesth Analg. 2014; 118(3):388-396

3	94 Sin	gle A	gent	Cases	S
Volatile	Agent wit	hout suc	cinylcho	oline	
■ halothane had fastest onset → statistical difference among all 4 agents					
Volatile Agent + succinylcholine					
 onset was shorter in all agents used 					
MH Onset Time in Presence or Absence of Succinylcholine					
	MH Onset Time (minutes)				
	No	Succinylcho	line	Succinylcholine	
Anesth Analg 2014	Agent	Number Cases	Median minutes	Number Cases	Median minutes
	Halothane	16	15.5	63	10
	Sevoflurane	56	45	37	30
	Desflurane	22	113.5	30	50
	Isoflurane	67	135	103	65

1 Unique First Sign of MH

- Typical early signs of MH
 - ↑ end tidal CO₂, muscle rigidity, sinus tachycardia, masseter muscle spasm (MMS)
- Can have a single unique 1st sign as well
 - 322 cases of 477 had a single 1st sign
 - hypercarbia 30.7% (illustrates the need for cannography)
 - masseter muscle spasm 24.8%
 - sinus tachycardia 21.1%

Masseter Muscle Spasm (MMS) is also known as Masseter Muscle Rigidity (MMR)

MH Onset with Succinylcholine but no Inhaled Agents

- 14 cases where succinylcholine was used but no inhaled agent (14 out of 477)
 - 11 of 14 (78.57%) had possible MH
 - = 2 of 14 (21 42 % bad falminant M)
 - dose was not defined → assume it was for intubation
- most frequent initial signs
 - masseter muscle spasm & sinus tachycardia (50%)
 - hypercarbia (35.7%)
 - elevated temperature (28.6%)

Anesth Analg. 2014; 118:388

MH Onset with Succinvlcholine

- Succinylcholine is used in only 5 to 10% of all general anesthetics
- as solo agent → low risk of MH reaction
 - Canadian review: 20 out of 129 MH cases (~16% of cases)
 - higher rate than other case reports
 - dose range of 0.5 to 2.5 mg/kg
- Succinylcholine + volatile gas: > 50% of reported MH cases

Anesth Analg. 2013;116:118

Summary from 2014 Report

- Combination of inhaled anesthetics & succinylcholine has the fastest onset of MH
- MH onset time is very rapid when see MMS after use of succinylcholine
- Halothane has fastest onset compared to other gases
- Sevoflurane has faster onset than desflurane and isoflurane
- Since 1998 MH appears more so in 2nd or 3rd hour of anesthesia

Anesth Analg. 2014;118(2): 388-96

Delayed Onset of MH

- Sevoflurane anesthesia
 - median onset → 60 minutes
 - range → 10 to 210 minutes
- Halothane anesthesia
 - median onset → 20 minutes
 - range → 5 to 45 minutes
- Use of non-depolarizing NMB agents
 - delay the onset of MH and result in ↓ in CK levels

AANA Journal. 2013;81(6): 441-445 Br J Anesthesia. 2011:107:48-56

Clinical Manifestations of MH

- Early descriptions of MH reactions in literature
 - all patients have generalized muscle rigidity
 - high fevers & acidosis
 - high mortality rate
- Current descriptions in literature
 - muscle rigidity may or may not be present
 - temperature increase is a "late finding"
 - <u>CO₂ increase is an early sign</u>
 - occur at any time during anesthetic even post operatively
 - recrudescence may occur despite treatment with dantrolene

Classic Malignant Hyperthermia

- the sine qua non, ↑ in end tidal CO₂
 - if you increase the minute ventilations, you will still see an \uparrow in end tidal CO_2 → it just may be delayed
 - intubated patients end tidal levels of ≥ 55 mm despite aggressive ventilation
 - has been described as the earliest & most sensitive sign of MH
 - reinforces the need for capnography
- tachycardia & tachypnea
 - overbreathing the ventilator is frequently seen
 - if open airway technique, you will see tachypnea

Classic Malignant Hyperthermia

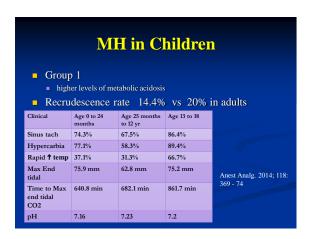
- muscle rigidity in all of the extremities
 - may not always be present
- hypertension
- ventricular dysrhythmias secondary to hyperkalemia
- increase in temperature 1 to 2° C Q5mins
 - 2.9 fold ↑ in complications for every 2° C ↑ in temperature
 - temperatures > 41.5° lead to coagulopathies including DIC
- increase temperature in CO₂ absorbent canister
 look for the "blue purple" canister
- peripheral skin mottling, sweating, & cyanosis

Classic Malignant Hyperthermia

- hyperkalemia & hypercalcemia
- cola colored urine = myoglobinuria
- acidosis as measured by blood gases
- increase in CK
 - ≥ 20,000 U in 1st 12 to 24 hours
 - not always a consistent finding → if present, most likely MH reaction
- DIC
 - PT. PTT. d-dimer
 - ↑ in risk of death (89 fold increase)
 - ↑ in risk of cardiac arrest (50 fold increase)

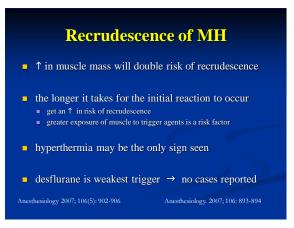
Anesthesiology. 2009; 110: 89-94

Classic Malignant Hyperthermia


- Patients with increased muscle mass
 - ↑ in risk of death (14 fold increase)
 - ↑ in risk of cardiac arrest (19 fold increase)
- Longer it takes EtCO₂ to peak
 - greater the risk of death or cardiac arrest

Exceptions

- succinylcholine + inhalation agents
 - 1st sign is more likely to be muscle rigidity especially masseter muscle rigidity (MMR) (MMS)
 - $\blacksquare \quad \uparrow \ \ \text{in EtCO}_2$ will follow along with hyperthermia and tachycardia
- hyperthermia
 - typically not the first sign
 - $\,\blacksquare\,$ "late sign" is relative term $\,\to\,$ it just follows the others but not by that much


MH in Children

- reported incidence depends upon study
 - Anest Analg. 2014: incidence of MH is 17%
 - # 1 (0 24 months old) #2 (25 mo- 12 yr.) #3 (13- 18 yr.)
- most common findings in all 3 groups
 - tachycardia (73.1%)
 - hypercarbia (68.6%)
 - rapid temperature elevation (48.5%)
 - group 3 → more likely to develop these findings
- Group 3
 - took longer to get to maximum end tidal levels
 - had higher K⁺ levels, more rhabdomyolysis, higher CK levels

Post Operative MH MH can occur any time perioperatively Post op MH 1.9% of all cases in MH – N. America registry maximum latency period is unknown onset usually 0 to 40 mins post operative hyperthermia not a usual presenting sign most of these cases are atypical presentations may only see rhabdomyolysis & cola-colored urine nvoglobinuria → urine dip stick in office Refer for MH testing to confirm muscle biopsy and/or genetic testing

Recrudescence of MH ■ recurrence of successfully treated MH crisis ≥ 2 hrs after initial reaction ■ incidence in adults is 20% (63 out of 308 cases) ■ 50% cases within 9hrs ■ 80% cases within 16 hrs ■ greater the intensity of the initial reaction ■ the more likely to see episode of recrudescence ■ no correlation to dose of dantrolene used in initial reaction & risk of a recurrent reaction

Trigger Agents • halothane (no longer manufactured in US) • isoflurane • sevoflurane & desflurane • desflurane < isoflurane < halothane as trigger • succinylcholine • older agents: ether, enflurane, & methoxyflurane • question? Is it the agent itself or the dose of the agent that causes MH?

Non Trigger Agents

- antibiotics & antihistamines
- local anesthetics & nitrous oxide
- barbiturates, propofol, & etomidate
- benzodiazepines, opioids, & ketamine
- droperidol & non depolarizing neuromuscular paralyzing agents

Temperature Monitoring

- MHAUS \rightarrow monitor temperature for all GA > 30 mins
- Core temperature is preferred method
- tympanic membrane → soft probe touching membrane → difficult t insert
 - esophageal probe in an esophageal stethoscope
 - nasopharynx → less accurate in open airway breathing through nose
- urinary bladder & rectum are considered intermediate sites
 - temperature changes here lag behind changes in core temperature
- core temperatures are more accurate than peripheral temperatures

Anesthesiology. 2008; 109:318-338

Peripheral Temperature Monitors

- axilla → probe must be over the axillary artery with the arm covering it
 - underestimates the core temperature
- forehead liquid crystal skin strips
 - forehead skin subcutaneous insulation is minimal compared to other sites in body
 - sweating & shivering → little effect on readings
 - clinically accurate for anesthetic monitoring → remember the core temperature is 2º higher
 - MHAUS → not acceptable for MH temperature monitoring
 - our setting is an office → we have certain limitations
- infrared tympanic → poor fit in ear canal
 - clinically inaccurate

Importance of Temperature Monitoring

- 30% mortality rate if temperature not monitored
- 21% mortality rate if relied on skin monitors
- 2% mortality rate if used core temperatures
- skin temperature instead of core temperature
 - = 30% increase in mortanty
- no temperature vs core temperature
 - 2 fold increase in mortality
- elevated temperature better identifies risk of death
 - $\quad \blacksquare \quad \text{better than } K^+$, pH, arterial CO_2 , or end tidal CO_2

Anesth Analg. 2014;119:1359-66

Testing for Malignant Hyperthermia

Caffeine Halothane Contracture Test CHCT

- MHAUS → CHCT is gold standard at present
- muscle biopsy under GA
 - $\,\blacksquare\,\,$ can not use local anesthesia may alter test results
- sensitivity = 97% (false negatives rare)
- specificity = 78% (false positives rare)
- need to wait for 3 to 6 months after suspect MH event or significant rhabdomyolysis to test

MHAUS Web Site

Malignant Hyperthermia (MH)

- inherited as an autosomal dominant
- 2 genes linked to MHS
- MHS 1 is the RYR1 gene
 - genetic mutations account for 50% to 70% cases of MHS patients
 - MHS 5 is the CACNA1S gene
 - mutations account for ~ 1% of MHS patients
- genetic testing identifies only 25 to 30% of patients with confirmed MHS

Anesthesiology Newsletter. Oct 2014

Anesth Analg. 2014; 118: 397-406 & 375-380

RYR1 Gene

- located on chromosome 19 (19q13.1-13.2)
- contains 106 exons of mRNA amino acid sequences
 - - as of 2014 → 31 are causative
 - in 2014 another 2 recommended (R2355W & V2354M)
- some patients may have ≥ 1 mutation in RYR1

Anesth Analg. 2014; 118: 375-380 Anesth Analg. 2014; 118: 397-406

Anesthesiology. 2008; 108: 208-215

Tiered Genetic Testing

- Tier 1 testing → blood test
 - look at 3 "hot zones" on RYR1 known to have causative mutations

 - 23% sensitivity
- Tier 2 testing → blood test

 - 70 to 80% sensitivity
- Discordance Rate of 10%
 - muscle biopsy positive but negative genetics

Genetic Testing

- not all MHS patients have known causative mutations
- however, once a causative mutation is found in a family
 - family members can get the genetic test first
 - if the causative mutation is found in their test, they are MHS positive

Curr Opinion Anaesth. 2009; 22: 744

Genetic Tests – Pros & Cons

- - less expensive than CHCT
 - far less invasive than CHCT
 - no need to travel
- - discordance CHCT results differ from genetic results
 - due to heterogeneity of MH, absence of causative mutation does not rule out MHS
 - still need a muscle biopsy
 - still expensive: \$800 to \$4000 for a partial to full gene scan

Management of MH Crisis in the Office

Office Plan for MH Reaction

- need protocol in place
 - assigned doctor and staff duties
 - transfer protocol to a specific hospital where MH can be treated

 - critical care on site

 - MHAUS hotline 1-800-644-9737
 - - 911 call → declare MH emergency with transfer to specific institution
 EMS alerts hospital → have anesthesiologist in ER
 do not delay transfer → you can give dantrolene in transit

Anesthesia Machine Preparation

- dedicated vapor free workstation
 - expensive & impractical
- intensive care ventilator
 - unit never exposed to volatile anesthetic agents
- unit that was treated with a "machine flush"
 - drain disable remove vaporizer from unit
 - flush with fresh gas 10 L/min for > 90 minutes
 - each manufacturer has specific guidelines
 - change anesthesia circuit, breathing bag, & CO₂ absorbent
 - keep gas flows at > 10 L/min to prevent rebound phenomenon
- residual volatile gas diffuses out of plastic parts in unit
- charcoal filters

Anesth Analg. 2014; 119:67-75

Vapor-Clean Charcoal Filters

- disposable filters
 - sterilization renders them useless
- can be used in an acute MH reaction
- acan be used to prevent an MH reaction
- approved for isoflurane, sevoflurane, & desflurane
- effective for 12 hours if not exposed to volatile
- will not capture or scavenge nitrous oxide

www.dynasthetics.com

Vapor-Clean Filters

- turn off vaporizer
 - tape it shut so it can not be turned back on accidentally
- flush unit for 90 seconds at 10 L/min of fresh gas
- place filters on inspired and expired unit ports
- replace bag & circuit
- maintain fresh gas at > 10 L/min
- reduces volatile agent to < 5 ppm in < 2 minutes for 90 minutes
- no need to replace anesthesia machine

Vapor-Clean

8 filters (4 pair) retail \$599.00

Office Equipment & Supplies

- monitors

 - ECG, SpO₂, HR, BP, & temperature
- refrigerated IV solutions: NSS
 - no LR because of calcium & potassium in solution
- ice for axilla, groin, legs

 - do not cool below 37.5 to 38° C → develop hypothermia
- 60 ml syringes (5) to mix & deliver dantrolene
- consider NG tube for cold lavage?

Medications

- dantrolene
 - 36 vials of 20 mg dantrolene or 3 vials of Ryanodex
- bacteriostatic free sterile water to dilute dantrolene
 - 60 mls needed to dilute → stock 100 ml vials
- ventricular dysrhythmias
 - 2% lidocaine pre filled syringes
 - amiodarone 300 mg vial
- sodium bicarbonate 8.4% 50 ml prefilled syringe
 - management of acidosis should be dictated by blood gases
- other advanced emergency medications

Dantrolene

- standard of care for MH reaction
 - only available treatment to reverse an MH episode
- acts within muscle cell to prevent Ca⁺⁺ release from the sarcoplasmic reticulum (SR)
- it is a skeletal muscle relaxant
 - affects the contractile response of muscle
- MHAUS → must be available within 10 minutes of the decision to treat
 - previous 5 minute time impractical
 - 1.5 times ↑ in complications for each 30 min delay in giving drug

Dantrolene

- initial dose 2.5 mg/kg IV bolus
 - given based upon total body weight → not lean body weight
 - some sources say limit is 10 mg/kg → others disagree
 - additional doses based upon continuation of symptoms
 - continued ↑ in temperature, EtCO₂, acidosis, & tachycardia
 - therapeutic levels for 4 to 6 hours
- why is there mannitol in dantrolene??
 - diuresis of kidneys
 - dantrolene is insoluble
 - mannitol allows dantrolene to go into solution

Personal communication: Dr. Herlich

Dantrolene

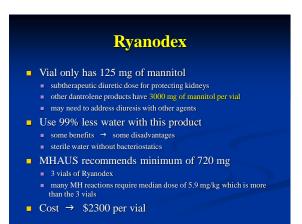
- If MH reaction returns → recrudescence
 - additional dose of dantrolene up to cumulative dose of 10 mg/kg
- all cases of MH → ICU admission for 36 hours
 - dantrolene 1 mg/kg IV Q 4 to 6 hours for next 24 hours
 - monitor coagulation
 - myoglobinuria monitor with heme test strip
 - if positive → maintain urine output at 2 ml/kg/h
 - monitor K⁺ and CK levels Q 8 h

Dantrolene Side Effects

- most common is muscle weakness
 - occurs in 25% of cases where dantrolene is used
 - dantrolene + non depolarizing NMB agents compound the weakness
 - make sure muscle strength has returned prior to extubation
- sterile phlebitis
 - ~ 11% of cases
 - treat with warm soaks and elevation of extremity
- in clinical doses for MH
 - rare to see myocardial contractility defects
- nausea & vomiting

Dantrolene Side Effect

- dantrolene & calcium channel blockers
 - dangerous combination
 - 2 common IV calcium channel blockers for emergency use
 - verapam
 - diltiazem
- side effects of concern from the combination
 - side effects of ■ hyperkalem<u>ia</u>
- mvocardial depression
- no apparent, significant negative interactions with other medication



Management in Office

- activate 911 to initiate transfer
- turn off inhalation gases & stop succinylcholine
- switch to nontriggering TIVA anesthesia
- 100% O₂ flush for 90 seconds at 10 L/min
 - do not replace anesthesia machine \rightarrow place Vapor-Clean filters \rightarrow replace anesthesia circuit and breathing bag \rightarrow keep gas flow > 10 L/min
- dantrolene 2.5 mg/kg IV bolus
 - many cases may respond to initial dose
 - EMS should be there by time dantrolene mixed and administered
- give chilled IV NSS → apply external ice packs

Office MH Reactions

- Primary goal in office
 - make the diagnosis
 - initiate transfer
 - get dantrolene into solution
- Takes 30 minutes on average to get to this point
 - EMS should be there by now
 - Do not delay transfer
 - Secondary management is very limited

Secondary Management

- ventricular dysrhythmias
 - most likely due to hyperkalemia
 - do you stock CaCl₂, Ca-gluconate, or regular insulin- dextrose in your office
 - tall, peaked T waves or very wide QRS complexes may be hyperkalemia but you don't know
 - amiodarone: 150 mg for V-tach 300 mg V-fib
 - 2% prefilled lidocaine 100 mg as alternative
- EMS still not there after dantrolene bolus given
 - looking at 20 to 30 minutes by now
 - metabolic acidosis: sodium bicarbonate
 - consider 1 to 2 mEg/kg IV in office (unlikely)

Patient Transfer

- do not advocate a "grab & go" from an office
 - prepare dantrolene in office & support patient until EMS arrives
- can not get laboratory values in office
 - primary care is limited to
 - stopping the trigger
 - 100% O₂
 - dantrolene for bolus
 - initial dysrhythmia management
 - ice packs for cooling
 - secondary care is working blindly without data & should not delay any transfer to a facility where comprehensive care can be delivered

Anesth Analg. 2012;114:94-100

Indicators of Stability

- EtCO₂ is declining or returns to normal
- Tachycardia is improving
- No ominous dysrhythmias
- Temperature is declining
- Generalized muscle rigidity is resolving
- IV dantrolene administration

Other Management Issues & Special Circumstances

Hyperkalemia

- K⁺ levels > 5.9 or less if there are consistent ECG changes
 - tall peaked T waves or very wide QRS
- insulin + glucose
 - $\quad \blacksquare \quad \text{insulin drives } K^+ \text{ back into cells} \to \text{glucose prevents hypoglycemia}$
 - Adults: 10 U regular insulin + 50 mls of 50% dextrose IV
 - Children: 0.1 U/kg regular insulin + 1.0 ml/kg 50% dextrose
 - may need to dilute to 25% dextrose to decrease irritation to veins
 - $\quad \blacksquare \quad \text{add albuterol by MDI or nebulizer to further drive } K^+ \text{ into cell}$

Hyperkalemia

- MH presents with hypercalcemia
 - no contraindication to using Ca to treat hyperkalemia
 - Ca is used to stabilize myocardial cells to prevent dysrhythmias
- $CaCl_2 \rightarrow 10 \text{ mg/kg IV}$ (max dose 2000 mg)
 - more effective than Ca-gluconate
 - central line preferred route
- Ca-gluconate → 30 mg/kg IV (max dose 3000 mg)
 - less irritation to veins
 - can avoid central lines & use peripheral line
- Lasix 0.5 to 1.0 mg/kg IV (max 20 mg) 1 dose

Myoglobinuria

- assume myoglobinuria is present if
 - labs show an ↑ in Creatine kinase (CK) and K+
- need to alkalinize urine to prevent renal tubular necrosis
 - sodium bicarbonate 1 mEq/kg/hr
- maintain urine output at > 1ml/kg/hr
 - mannitol in dantrolene will cause diuresis

Masseter Muscle Rigidity MMR

- masseter muscle spasm after inject succinylcholine
- incidence 1: 12,000 GA
- more common in children & adolescents
 - 1: 100 to 1:5000 general anesthetics using volatile gas + succinylcholine
- it is associated with MHS
 - occurs in ~ 50% of MHS patients
- most cases induced by volatile agent + succinylcholine
 - TIVA cases + succinylcholine are less common
- "tight jaw is not due to light anesthesia"

Masseter muscle rigidity (MMR) is same as Masseter Muscle Spasm (MMS)

Masseter Muscle Rigidity MMR

- additional doses of succinylcholine or non depolarizing NMB agents
 - will not reverse the spasm
- 30% of MMR cases
 - immediate onset of MH crisis
- majority of cases of MH
 - occur in ~ 20 minutes post trigger exposure

Advice for Inpatient MMR

- elective surgery → stop the surgery & monitor for MH reaction over several hours
- emergency surgery → start MH protocol
 - stop triggering agents & switch to TIVA instead of volatile gas
 - flush volatile gas out for 90 secs at 10 L/min & place Vapor-Clean
 maintain 100% O₂ at > 10 L/min
 - only proceed with surgery if dantrolene is on site
 - capnography is mandatory + monitor for other signs of MH
 - if MH reaction starts → stop surgery and treat MH
 - hospital case: keep for 12 to 24 hours
 - look for myoglobin in urine
 - follow CK levels → levels > 20,000 units MH likely

Office MMR

- if seen in an office (especially child or teenager)
 - early transfer is far better than waiting for a fulminant reaction
 - succinylcholine was given → tight jaw is not due to light anesthesia
- start your office protocol
 - stop triggering agents → let the patient wake up
 - initiate transfer
 - = $100\% O_2$ & prepare machine if volatile gases were used
 - get dantrolene & monitor for signs of MH
- be smart & transfer out

Myodystrophies & Anesthesia

- Duchenne Muscular Dystrophy
- Becker Dystrophy
- These patients develop cardiac arrest after succinylcholine or volatile anesthetic agents
 - due to release of potassium from muscle cells along with release of myoglobin
- Resembles a MH crisis
 - not felt to be true MH

Succinylcholine Induced Hyperkalemic Rhabdomyolysis & Cardiac Arrest

- Apparently healthy children with acute onset hyperkalemia & rhabdomyolysis within minutes of succinylcholine use
- ventricular dysrhythmias & sudden cardiac arrest within mins of succinylcholine use
 - peaked T waves seen on EKG
- males, usually age 8 or younger
 - on autopsy, muscular myopathy usually Duchenne's

Succinylcholine Induced Hyperkalemic Rhabdomyolysis & Cardiac Arrest

- if you don't suspect inadequate ventilation & hypoxia or anesthetic overdose as the cause
 - immediately start treatment for hyperkalemia
 - calcium, glucose + insulin, bicarb, & hyperventilate
- resuscitation attempts are usually unsuccessful
- FDA placed black box warning
 - avoid succinylcholine in children and young adults for elective surgery
- Avoid succinylcholine
 - major burns, stroke, and spinal cord injuries

MH Associated Disease

- Central Core Disease CCD
 - many case reports of MH in CCD patients
 - gene mutations on RYR1 gene
- Myotonias
- King-Denborough Syndrome

Awake Malignant Hyperthermia

- Exertional heat related illness
 - triggers: high environmental temperatures, high humidity, & strenuous physical activity
 - symptoms
 - confusion, dizziness, fatigue, HA, & syncope
 - \blacksquare profuse sweating, hyperthermia, & tachycardia
 - dark colored urine
 - most likely dehydration so urine is concentrated
 - \blacksquare or myoglobin in urine from rhabdomyolysis
 - may progress to heat stroke if left untreated

Awake Malignant Hyperthermia

- Heat stroke
 - usually seen in extremes of age: <4 or >65
 - men > women
 - often a progression of exertional heat exhaustion
 - symptoms
 - confusion, agitation, slurred speech, delirium, seizures, & coma
 - hyperthermia > 104 F or 40 C
 - skin
 - vasodilated
 - moist in exertion dry in non exertional heat stroke
 - tachycardia, N/V, & tachypnea
 - hyperkalemia, rhabdomyolysis, & multiple organ failure
 - untreated mortality 21%

Awake Malignant Hyperthermia

- Management of Heat Exhaustion & Stroke
 - get out of sun into air conditioned room
 - hydrate PO and IV & active cooling measures
- Heat Stroke
 - no association to MH at present
- Exertional Heat Exhaustion
 - 1% of MHS patients report history of heat related problems
 - case reports of positive RYR1 MH mutation patients having
 - "awake MH" reactions

Pediatric Anesthesia.2013;23:842

MHAUS Guidelines

- Non anesthetized MHS patient suffering sudden collapse, muscle rigidity, and hyperthermia
 - treat with dantrolene & active cooling
 - no succinylcholine if need to intubate
- MHS patient or relatives with no adverse effects from heat & excercise
 - no need to limit activity
- MHS patient or relatives with adverses effects from heat & exercise
 - should limit activity

AnesthesiologyNews.com Oct 2014

Awake MH

- common findings
 - no succinylcholine or volatile gase
 - muscle rigidity, hyperthermia, CVS collapse, & positive MH RYR1 gene mutation
- 6 y.o. playing in splash pool on hot day
 - lower extremity rigidity, trismus, temperature 108.9 F
 - fulminant MH reaction transferred to ER
 - given succinylcholine to intubate & died
 - always defer succinylcholine for intubation in hyperthermic patien

Pediatric Anesthesia.2013;23:851

Case Presentation

- 2 y.o. Female 12.7 kg for dental restorations
 - MHS family history
- TIVA GA + intubation
 - Propofol, MS, nitrous oxide, & glycopyrrolate
- 15 minutes post induction
 - hyperthermia → rapid rise temp to 41.6 C in 10 minutes
 - end tidal 52 mm despite increase in ventilation
- 28 minutes post induction
 - dantrolene 2.5 mg/kg IV + active cooling, fluids, & sodium bicarb
 - temperature started to decrease in 5 minutes
- acancelled case, extubate, transfer to hospital, discharged next day

Anesth Analg. 2010;111(3): 822

Case Presentation

- Case Review
 - machine was prepped overnight in standard fashion
 - no infection
 - cause UNDETERMINED
- "Until we understand the mechanism of human MH triggering, no anesthetic regimen can guarantee safety"

Anesthesiology.1981;54:1-2 Anesth Analg.2012;111(3): 822

Mimics of MH

- Fever but no muscle rigidity
 - sepsis, thyrotoxicosis, pheochromocytoma, iatrogenic overheating during surgery, & anticholinergic syndrome
- Fever along with muscle rigidity
 - neuroleptic malignant syndrome (NMS), cocaine, amphetamines, & ecstasy
- Osteogenesis Imperfecta

MH Susceptible Employees

- **are MHS employees at risk in your office?**
 - in reviewing the literature, no reports were found documenting any risk to MHS staff participating in general anesthetics using volatile agents in the office
- operatories should have proper scavenging
 - volatile gases are heavier than air and fall to ground
 - will keep gas levels to < 5 ppm

MHS Patient Recovery Time

- inpatient or ambulatory surgery
- general anesthesia without triggering agents
 - no adverse intraoperative event
- Recovery time
 - inpatient: PACU for at least 1 hour, may consider 2 hours
 - monitor vital signs Q 15 mins
 - ambulatory surgery
 - PACU for 1 hour and monitor vital signs Q 15 mins
 - Phase 2 PACU/Step down for another 1 hour
 - consider use of chemstrip to document absence of myoglobin
 - vital signs: ECG, pulse oximetry, pulse, BP, temperature, & CO₂

MHS Patients & Office Anesthesia

- is it safe to do MHS patients in the office?
 - local anesthesia & nitrous oxide are not triggers
 - TIVA agents are not triggers
 - Yes, it should be safe
 - Do I need to stock Dantrolene in the office?
 - Are there concerns?

MH Concerns in the Office

- emergency intubation for lost airway in offices without anesthesia machines & offices that just do moderate to deep sedation
 - incidence of this event → no data available
 - incidence of use of succinylcholine → no data available to assess risk
 - non depolarizing agents are an alternative
 - 1 Gel LMA would be the most appropriate airway device

MH Concerns in the Office

- Incidence of laryngospasm in children & adults?
- Incidence of succinylcholine in these cases?
- 7304 pediatric sedations by pediatric critical care specialists
- 7304 pediatric sedations by pediatric critical care specialis
 0.3% incidence of spasm
- pediatric propofol anesthetics outside of OR by anesthesiologists
- 7581 dental pediatric anesthetics
 - 5 patients needed succinylcholine to manage spasm 0.065%
- no current data on adults
- Probability of needing succinylcholine for spasm is 0.03%
- Recommendation from paper → stock dantrolene

Anesth Analg. 2013;116:118

MHS patients & Office Surgery

- If you use succinylcholine, do you need dantrolene?
- Dental literature
 - JOMS. 2008; 66: 1485-88... "until all trigger agents can be removed from an OMFS office, you need to stock 10 to 12 vials of dantrolene to give an initial dose to a 70 kg patient."
 - OOO. 2011; 112:e1-e7.... Stock 10 to 12 vials in office if you have triggering agents
- MHAUS site → stock 36 vials dantrolene or 3 vials of Ryanodex
 - remember: complications ↑ 1.6 times for every 30 minute delay from the 1st sign of MH and the use of dantrolene → 2.9 ↑ in complications for every 2° C rise in temperature

Alternatives to Succinylcholine

- Rocuronium
 - new onset laryngospasm → failed positive pressure → not "blue"
 - 0.6 mg/kg → full paralysis in ~ 2 minutes → cords sooner
 - laryngospasm → patient is "crashing"
 - 1.0 mg/kg → cord paralysis in ~ 1 minute
 - need to ventilate patient > 30 minutes
 - consider reversal with neostigmine / glycopyrrolate before you discharge patient
 - Sugamadex: encapsulates and inactivates rocuronium
 - 2-16 mg/kg: dose \geq 4 mg/kg reverses in < 3 minutes (1 to 2 min)
 - available in Europe not US → bronchospasm holds up FDA approval

Adlesic - Ganzberg. MH Chapter. Pending publication

Alternatives to Succinylcholine

- Lidocaine 1%
 - positive pressure fails to relieve laryngospasm
 - inject 1 to 2 ml of 1% lidocaine through the cricothyroid membrane
 - 25 gauge needle 1 2 ml 1% lidocaine
 - causes an immediate cough to open cords
 - cords get anesthetized by lidocaine as it is coughed out of the airway
 - reduces risk of recurrent laryngospasm

Int Anesthesiol Clin.1997;35(3): 13-31

Alternatives to Succinylcholine

- Propofol
 - study used low dose propofol for laryngospasm after LMA removal in children
 - 0.8 mg of Propofol IV
 - 752 LMA General anesthetics
 - 20 pts had laryngospam after LMA removed
 - all got positive pressure with 100% oxyge
 - 7 of 20 responded to positive pressure
 - 13 had desaturations to 85% → got Propofol
 - 10 patients responded
 - 3 got re intubated after succinylcholine
 - proposed new study at 1 to 1.5 mg/kg in future

Paediatric Anesthesia.2002;12:625

MHS patients & Office Surgery

- MHAUS opinion if no triggers used in GA

 - PACU for 1 hour and monitor vital signs Q 15 mins

 - consider use of chemstrip to document absence of myoglobin
 - vital signs: ECG, pulse oximetry, pulse, BP, temperature, & CO₂

How long do you recovery your office anesthestics?

Anesthesia Course

- audience was asked if they used trigger agents in the
 - 117 responded yes72 responded no
- those who used trigger agents where asked if they had dantrolene

 - the follow up question should have been. What trigger agent?????
- the debate continues in the dental community

Questions

Edward C. Adlesic, DMD

Oral and Maxillofacial Surgery edward_adlesic@msn.com